Article 6315

Title of the article

EIGENVALUE PROBLEM THAT DESCRIBES ELECTROMAGNETIC TE-WAVE PROPAGATION IN A PLANE DIELECTRIC WAVEGUIDE WITH NONLINEAR INHOMOGENEOUS MEDIA

Authors

Marennikova Ekaterina Alekseevna, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), shirokova.ekaterina.88@gmail.com

Index UDK

517.927, 517.958, 517.968

Abstract

Background. The aim of this work is to study the problem of electromagnetic TE- waves propagation in a plane nonlinear inhomogeneous dielectric waveguide.
Materials and methods. The author used general methods of the theory of bound-ary value problems, the semi-conversion method (reduction of the differential equa-tion to the integral equation using the Green's function), the contracting mapping method.
Results. The researcher has obtained a dispersion equation and proved existence of dispersion equation’s roots (propagation constants). The regions of localization of the propagation constants have been found. Numerical results (graphics of dispersion curves and eigenfunctions of the problem) have been presented.
Conclusions. The obtained results can be used in the study of the problem of coupled electromagnetic waves propagation.

Key words

inhomogeneous nonlinear plane waveguide, eigenvalue problem, Green’s function, propagation constant, dispersion equation.

Download PDF
References

1. Smirnov Yu. G. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2015, vol. 55, no. 3, pp. 460–468.
2. Valovik D. V., Smirnov Yu. G. Rasprostranenie elektromagnitnykh voln v nelineynykh sloistykh sredakh. [Electromagnetic wave propagation in nonlinear stratified media]. Penza: Izd-vo PenzGU, 2010, 264 p.
3. Valovik D. V., Smirnov Yu. G., Shirokova E. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2012, № 1 (21), pp. 66–74.
4. Boardman A. D., Egan P., Lederer F., Langbein U., Mihalache D. Third Order Nonlinear Electromagnetic TE and TM Guided Waves. Elsevier Science Publishers, 1991.
5. Valovik D. V. Radiotekhnika i elektronika [Radio engineering and electronics]. 2011, vol. 56, no. 11, pp. 1329–1335.
6. Valovik D. V. Nonlinear Analysis: Real World Applications. 2014, vol. 20, pp. 52–58.
7. Smirnov Yu. G., Valovik D. V. Physical Review A. 2015, vol. 91, no. 1.
8. Valovik D. V., Smirnov Yu. G. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2008, vol. 48, no. 12, pp. 2186–2194.
9. Valovik D. V. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2011, vol. 51, no. 9, pp. 1729–1739.
10. Valovik D. V., Zarembo E. V. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2013, vol. 53, no. 1, pp. 74–89.
11. Vladimirov V. S. Uravneniya matematicheskoy fiziki [Mathematical physics equations]. Moscow: Nauka, 1981, 512 p.
12. Trenogin V. A. Funktsional'nyy analiz [Functional analysis]. Moscow: Nauka, 1993, 496 p.

 

Дата создания: 12.02.2016 10:55
Дата обновления: 12.02.2016 14:09